
GNU Mes Reference Manual
Full Source Bootstrapping for the GNU system

Jan (janneke) Nieuwenhuizen

Edition 0.26.1
5 November 2023

Copyright c© 2018,2019,2020,2021,2022,2023 Janneke Nieuwenhuizen

Permission is granted to copy, distribute and/or modify this document under the terms of
the GNU Free Documentation License, Version 1.3 or any later version published by the Free
Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover
Texts. A copy of the license is included in the section entitled “GNU Free Documentation
License”.

i

Table of Contents

1 Introduction . 1
1.1 Software Freedom . 1
1.2 Reproducible Builds . 2

1.2.1 Can we trust our freedom? . 2
1.2.2 An Old Idea . 2

1.3 Bootstrappable Builds . 2
1.3.1 Bootstrap Binary Seed . 2

1.4 Reduced Binary Seed Bootstrap . 3
1.5 Scheme-only Bootstrap . 3
1.6 Full Source Bootstrap . 3

1.6.1 Stage0 . 4
1.6.2 M2-Planet . 5

1.7 LISP as Maxwell’s Equations of Software . 5
1.7.1 Auditable Elegance . 6

2 Installation . 7
2.1 Requirements . 7
2.2 Bootstrap Requirements . 7
2.3 Running the Test Suites . 8

3 Bootstrapping . 9
3.1 The Mes Bootstrap Process . 9

3.1.1 Full Source Bootstrap Deployments . 11
3.2 Invoking mes . 11

3.2.1 Environment Variables . 12
3.3 Invoking mescc . 13

3.3.1 MesCC Environment Variables . 14
3.4 Invoking mesar . 14

4 Contributing . 15
4.1 Building from Git . 15
4.2 Running Mes From the Source Tree . 15
4.3 Porting GNU Mes . 15
4.4 The Perfect Setup . 16
4.5 Coding Style . 16

4.5.1 Programming Paradigm . 16
4.5.2 Formatting Code . 16

4.6 Submitting Patches . 16
4.6.1 Reporting Bugs . 17

5 Acknowledgments . 18

ii

6 Resources . 19

Appendix A GNU Free Documentation License . . 20

Concept Index . 28

Programming Index . 29

1

1 Introduction

These were “Maxwell’s Equations of Software!”
—Alan Kay

The purpose of GNU Mes1 is to help create a computer operating system that we can
trust.

Mes consists of a mutual self-hosting Scheme interpreter written in C and a Nyacc-based
(see see Section “NYACC User’s Guide” in NYACC User’s Guide) C compiler written in
Scheme. The Scheme interpreter mes.c is about 5,000LOC of restricted C, to be compiled
with M2-Planet2, a very simple C compiler.

If we want to trust our computers to do what we instructed them to do then we need to
be able to inspect all instructions—all softwares—that we have given it to run.

1.1 Software Freedom

The four essential Freedoms of Software are at the core of our GNU community. Quoting
the GNU philosophy3

A program is free software if the program’s users have the four essential free-
doms:

0. The freedom to run the program as you wish, for any purpose (freedom 0).

1. The freedom to study how the program works, and change it so it does
your computing as you wish (freedom 1). Access to the source code is a
precondition for this.

2. The freedom to redistribute copies so you can help others (freedom 2).

3. The freedom to distribute copies of your modified versions to others (free-
dom 3). By doing this you can give the whole community a chance to
benefit from your changes. Access to the source code is a precondition for
this.

A computer operating system that respects the user’s freedom is one essential ingredient
for building a reliable, trustable computing system. There are about a dozen general pur-
pose operating systems that can be trusted in this way, see Free Distributions (https://
www.gnu.org/distros/free-distros.html). For all softwares on such a system we have
the full source code and build recipes available.

So we have access to all the software, we have studied it, possibly modified it, then we
built it and we installed it on a computer or some device or appliance. How can we trust
that when we run the program we are indeed running the untainted product of the source
code that we studied? Unless we are certain of this we cannot really enjoy Freedom 1.

1 “Mes” is an acronym for the Maxwell Equations of Software.
2 See https://github.com/oriansj/m2-planet
3 The four essential freedoms https://www.gnu.org/philosophy/free-sw.html

https://www.gnu.org/distros/free-distros.html
https://www.gnu.org/distros/free-distros.html
https://github.com/oriansj/m2-planet
https://www.gnu.org/philosophy/free-sw.html

Chapter 1: Introduction 2

1.2 Reproducible Builds

The current Reproducible Builds effort incubated in the Debian project4 and was organized
by Lunar. Quoting the Reproducible Builds website5

A build is reproducible if given the same source code, build environment and
build instructions, any party can recreate bit-by-bit identical copies of all spec-
ified artifacts.

1.2.1 Can we trust our freedom?

Now consider the opposite, that a second build of a piece of source code produces a differ-
ent binary program. Upon further investigation we might find that the only difference is
probably harmless: a timestamp that was embedded in the binary, or perhaps the name of
the user that built it or directory it was built in. Such investigations can be nontrivial and
are highly unpractical. And what if the binary difference is not so trivial, cannot be easily
accounted for?

A piece of software that cannot be built bit-by-bit reproducible is probably not a good
community member in the world of software freedom. We think the importance of repro-
ducibility should not be underestimated largely because failing that precondition makes
justifable trust in binaries provided suspect at best and downright dangerous in reality.

It becomes clear that a bit-by-bit reproducible build of all our sofwares is essential if we
value our Freedom 1.

1.2.2 An Old Idea

The idea of reproducible builds is not very new. It was implemented for GNU tools in the
early 1990s (which we learned, much later in 2017). In the Debian world it was mentioned
first in 2000 and then more explicitly in 2007 on debian-devel6

I think it would be really cool if the Debian policy required that packages could
be rebuild bit-identical from source.

—Martin Uecker

1.3 Bootstrappable Builds

Software distributions that take reproducible builds seriously are currently shipping well
over 90% reproducible packages.

That a package builds bit-by-bit reproducibly however is not enough to guarantee Free-
dom 1. There is another factor that is often overlooked: opaque ascii or binary seeds that
are injected during build time. Yes, a package may build reproduciblly from all inspectable
sourcess...but what functionality is programmed in the opaque seed?

1.3.1 Bootstrap Binary Seed

Possibly one of the most harmless, but certainly by far the biggest binary seed that all
software distributions inject are the so called bootstrap binary seed. Bootstrap binaries are
the initial binary seeds that are used to start building the distribution.

4 The Debian Project (https://debian.org)
5 Reproducible Builds (https://reproducible-builds.org/)
6 Martin Uecker on debian-devel on bit-reproducibility (https://lists.debian.org/debian-devel/2007/
09/msg00746.html)

https://debian.org
https://reproducible-builds.org/
https://lists.debian.org/debian-devel/2007/09/msg00746.html
https://lists.debian.org/debian-devel/2007/09/msg00746.html

Chapter 1: Introduction 3

The GNU Guix operating system (see The GNU Guix Manual), version 1.0 had a rel-
atively small closure of bootstrap binary seed: GNU binutils, GNU gcc, GNU Libc, GNU
Guile, and “Static binaries” (think: bash, bzip2, coreutils, gawk, grep, gzip, patch, sed, tar,
xz).

$ du -schx $(readlink $(guix build bootstrap-tarballs)/*)

2.1M /gnu/store/9623n4bq6iq5c8cwwdq99qb7d0xj93ym-binutils-static-stripped-tarball-2.28.1/binutils-static-stripped-2.28.1-x86_64-linux.tar.xz

18M /gnu/store/437xwygmmwwpkddcyy1qvjcv4hak89pb-gcc-stripped-tarball-5.5.0/gcc-stripped-5.5.0-x86_64-linux.tar.xz

1.8M /gnu/store/55ccx18a0d1x5y6a575jf1yr0ywizvdg-glibc-stripped-tarball-2.26.105-g0890d5379c/glibc-stripped-2.26.105-g0890d5379c-x86_64-linux.tar.xz

5.7M /gnu/store/bqf0ajclbvnbm0a46819f30804y3ilx0-guile-static-stripped-tarball-2.2.3/guile-static-stripped-2.2.3-x86_64-linux.tar.xz

5.8M /gnu/store/j8yzjmh9sy4gbdfwjrhw46zca43aah6x-static-binaries-tarball-0/static-binaries-0-x86_64-linux.tar.xz

33M total

only a 33MB download that unpacks to a 252MB seed of opaque binary code.

$ for i in $(readlink $(guix build bootstrap-tarballs)/*);\

do sudo tar xf $i; done

$ du -schx *

130M bin

13M include

54M lib

51M libexec

5.2M share

252M total

1.4 Reduced Binary Seed Bootstrap

During the Guix 1.1 development series we managed to create the first reduction by 50% of
the Guix bootstrap binary seed7. This was a very important step because the ~250MB seed
of binary code was practically non-auditable, which makes it hard to establish what source
code produced them.

1.5 Scheme-only Bootstrap

The next step that Guix has taken is to replace the shell and all its utilities with implemen-
tations in Guile Scheme, the Scheme-only bootstrap. This second halving of the boostrap
binaries reduced their size to 25%8. Gash (see Section “Gash” in The Gash manual) is a
POSIX-compatible shell that replaces Bash, and it comes with Gash Utils which has mini-
malist replacements for Awk, the GNU Core Utilities, Grep, Gzip, Sed, and Tar. The rest
of the bootstrap binary seeds that were removed are now built from source.

1.6 Full Source Bootstrap

The holy grail for bootstrappability will be connecting hex0 to mes.
—Carl Dong

Reduction of binary seeds is great, but there is an obvious target: we cannot allow any
binary seeds in our software stack. Not even in the bootstrap binary seed. Maybe that is

7 See https://guix.gnu.org/blog/2019/guix-reduces-bootstrap-seed-by-50/
8 See https://guix.gnu.org/en/blog/2020/guix-further-reduces-bootstrap-seed-to-25/

https://guix.gnu.org/blog/2019/guix-reduces-bootstrap-seed-by-50/
https://guix.gnu.org/en/blog/2020/guix-further-reduces-bootstrap-seed-to-25/

Chapter 1: Introduction 4

a bit too strong: we want to have the absolute minimum of binary seeds and all binary
seeds need to be inspectable and must be reviewed. How big would the absolute minimal
set be? During the Guix 1.5 development series we managed to close the gap between
stage0-posix and mes. We refer to this as the Full-Source Bootstrap.

1.6.1 Stage0

June 2016 I learnt about Stage0 (https://github.com/oriansj/stage0/). Jeremiah Ori-
ans created hex0 a ~500 byte self-hosting hex assembler. The source code is well documented
and the binary is the exact mirror of the source code. I was inspired.

Here is an example of what the hex0 program looks like; the start of the hex function

00000060: 4883 f830 7c6f 4883 f83a 7c5a 4883 f841 H..0|oH..:|ZH..A

...

000000d0: 48c7 c0ff ffff ffc3 0000 0000 0000 0000 H...............

000000e0: 4883 e830 c300 0000 0000 0000 0000 0000 H..0............

All computer programs look like this: an opaque list of computer codes. The initial
programs that we take for granted—the bootstrap binary seed—are about 250MB of such
numbers: think 250,000 pages full of numbers.

Most computers work pretty well so apparently there is not a pressing need to inspect
and study all of these codes. At the same time it is tricky to fully trust9 a computer that
was bootstrapped in this way.

Here is what the source code of the hex0 assembler looks like

function: hex

48 83 f8 30 # cmp $0x30,%rax

7c 6f # jl 6000f3 <ascii_other>

48 83 f8 3a # cmp $0x3a,%rax

7c 5a # jl 6000e4 <ascii_num>

48 83 f8 41 # cmp $0x41,%rax

...

function: ascii_other

48 c7 c0 ff ff ff ff # mov $0xffffffffffffffff,%rax

c3 # ret

...

function: ascii_num

48 83 e8 30 # sub $0x30,%rax

c3 # ret

While it may be hard to understand what this piece of the program does, it should be
possible for anyone to verify that the computer codes above correspond to the source code
with comments.

One step beyond these annotated codes is Assembly language. To write a program
in Assembly, you only need to provide the instructions; the codes are computed by the
assembler program.

hex:

9 Ken Thompson’s 1984 Turing award acceptance speech Reflections on Trusting Tust (https://www.
ece.cmu.edu/~ganger/712.fall02/papers/p761-thompson.pdf).

https://github.com/oriansj/stage0/
https://www.ece.cmu.edu/~ganger/712.fall02/papers/p761-thompson.pdf
https://www.ece.cmu.edu/~ganger/712.fall02/papers/p761-thompson.pdf

Chapter 1: Introduction 5

deal all ascii less than 0

cmp $48, %rax

jl ascii_other

deal with 0-9

cmp $58, %rax

jl ascii_num

...

ascii_other:

mov $-1, %rax

ret

ascii_num:

sub $48, %rax

ret

More readable still, a similar program text in the C programming language.

int

hex (int c)

{

if (c >= '0' && c <= '9')

return c - 48;

...

}

What if we could bootstrap our entire system from only this one hex0 assembler binary
seed? We would only ever need to inspect these 500 bytes of computer codes. Every10 later
program is written in a more friendly programming language: Assembly, C, . . . Scheme.

Inspecting all these programs is a lot of work, but it can certainly be done. We might
be able to create a fully inspectable path from almost nothing to all of the programs that
our computer runs. Something that seemed to be an impossible dream is suddenly starting
to look like “just a couple years of work”.

1.6.2 M2-Planet

M2-Planet (https://github.com/oriansj/m2-planet/)11, when combined with
mescc-tools (https://savannah.gnu.org/projects/mescc-tools/); allows one to
compile a subset of the C language into working binaries with introspective steps
inbetween. In 2021 M2-Planet with release 1.8.0 reached a level of maturity that allowed
to build MesCC-Tools and Mes. This allows for another reduction the Guix bootstrap
binaries: mes and mescc-tools can be removed.

1.7 LISP as Maxwell’s Equations of Software

As fate would have it, I stumbled upon this interview with Alan Kay (https://queue.acm.
org/detail.cfm?id=1039523), where he shares a revelation he had when reading John

10 Some program languages have become very hard or practically impossible to bootstrap. Instead of
depending on a simple language such as C, they depend on a recent version of itself, or on other binary
or ASCII seeds, on other recent programs written in that language, or even on manual intervention.
Programs written in a language that cannot be bootstrapped can still run on our systems, but cannot
enjoy any of the trust we intend to create.

11 The PLAtform NEutral Transpiler

https://github.com/oriansj/m2-planet/
https://savannah.gnu.org/projects/mescc-tools/
https://queue.acm.org/detail.cfm?id=1039523
https://queue.acm.org/detail.cfm?id=1039523

Chapter 1: Introduction 6

McCarthy’s LISP-1.5 (https://www.softwarepreservation.org/projects/LISP/book/
LISP%201.5%20Programmers%20Manual.pdf) manual:

that was the big revelation to me . . . when I finally understood that the half
page of code on the bottom of page 13 of the Lisp 1.5 manual was Lisp in
itself. These were “Maxwell’s Equations of Software!” This is the whole world
of programming in a few lines that I can put my hand over.

—Alan Kay

Our starting point is hex0, a 500 byte hex assembler and we need to somehow close the
gap to building the bootstrap binary seed, esp. GNU Gcc and the GNU C Library. What
better way to do that than by leveraging the powers of LISP?

GNU Mes is a Scheme12 interpreter that will be indirectly bootstrapped from hex0 and
that wields the magical powers of LISP to close the bootstrap gap, asserting we can enjoy
software Freedom 1.

1.7.1 Auditable Elegance

eval and apply are mutual recursing functions that—using a few helper functions—describe
the core of the universe of computing.

(define (apply fn x a)

(cond

((atom fn)

(cond

((eq fn CAR) (caar x))

((eq fn CDR) (cdar x))

((eq fn CONS) (cons (car x) (cadr x)))

((eq fn ATOM) (atom (car x)))

((eq fn EQ) (eq (car x) (cadr x)))

(#t (apply (eval fn a) x a))))

((eq (car fn) LAMBDA)

(eval (caddr fn) (pairlis (cadr fn) x a)))

((eq (car fn) LABEL)

(apply (caddr fn) x

(cons (cons (cadr fn) (caddr fn)) a)))))

(define (eval e a)

(cond

((atom e) (cdr (assoc e a)))

((atom (car e))

(cond ((eq (car e) QUOTE) (cadr e))

((eq (car e) COND) (evcon (cdr e) a))

(#t (apply (car e) (evlis (cdr e) a) a))))

(#t (apply (car e) (evlis (cdr e) a) a))))

It will be a big day when our computers are fully bootstrapped from source. It would
be nice if that source code were readable, auditable and elegant. To be honest, the elegance
displayed above that we achieved at the very start of the Mes project is currently hard to
find. It is our sincerest hope to bring back this level of quality and elegance..

12 Scheme is a modern LISP

https://www.softwarepreservation.org/projects/LISP/book/LISP%201.5%20Programmers%20Manual.pdf
https://www.softwarepreservation.org/projects/LISP/book/LISP%201.5%20Programmers%20Manual.pdf

7

2 Installation

Mes is available for download from its website at https://www.gnu.org/pub/gnu/mes/.
This section describes the software requirements of Mes, as well as how to install it and get
ready to use it.

2.1 Requirements

This section lists requirements when building Mes from source. The build procedure for
Mes is the same as for other GNU software, and is not covered here. Please see the files
README and INSTALL in the Mes source tree for additional details.

GNU Mes depends on the following packages:

• GNU Guile (https://gnu.org/software/guile/), version 2.0.13 or later, including
2.2.x and 3.0.x,

• GNU Make (https://www.gnu.org/software/make/).

• NYACC (https://savannah.gnu.org/projects/nyacc/), version 1.00.2,

• GCC’s gcc (https://gcc.gnu.org), version 2.95.3 or later, including 10.2.0,

• mescc-tools (https://savannah.gnu.org/projects/mescc-tools/), version 1.5.0,

The following dependencies are optional:

Support for building the bootstrap bin/mes-m2 depends on

• M2-Planet (https://github.com/oriansj/m2-planet/), version 1.11.0.

Mes is compatible with GNU Guile, so it is possible to share the same Scheme code be-
tween both. Currently Mes only supports the minimal subset of R5RS and Guile extensions
to run MesCC.

2.2 Bootstrap Requirements

This section lists requirements when building Mes as a bootstrap package. The bootstrap
build procedure for Mes is similar to building GNU software and goes like this

sh configure.sh --prefix=/your/prefix/here

sh bootstrap.sh

sh check.sh

sh install.sh

See configure.sh and bootstrap.sh for inspiration on what environment variables to
set.

Bootstrapping Mes depends on the following packages:

• a POSIX-compatible shell

• mescc-tools (https://savannah.gnu.org/projects/mescc-tools/), version 1.5.0,

• M2-Planet (https://github.com/oriansj/m2-planet/), version 1.11.0.

• NYACC (https://savannah.gnu.org/projects/nyacc/), version 1.00.2,

https://www.gnu.org/pub/gnu/mes/
https://gnu.org/software/guile/
https://www.gnu.org/software/make/
https://savannah.gnu.org/projects/nyacc/
https://gcc.gnu.org
https://savannah.gnu.org/projects/mescc-tools/
https://github.com/oriansj/m2-planet/
https://savannah.gnu.org/projects/mescc-tools/
https://github.com/oriansj/m2-planet/
https://savannah.gnu.org/projects/nyacc/

Chapter 2: Installation 8

2.3 Running the Test Suites

After a successful configure and make run, it is a good idea to run the test suites.

make check

Run Mes Scheme language semantics tests (scaffold/boot) only

build-aux/check-boot.sh

Run a single Mes boot test

MES_BOOT=scaffold/boot/00-zero.scm bin/mes

Run a single Mes Scheme test

./pre-inst-env tests/boot.test

MES=guile ./pre-inst-env tests/boot.test

Run MesCC tests only

build-aux/check-mescc.sh

Run a single MesCC test

CC=gcc CC32=i686-unknown-linux-gnu-gcc MES=guile \

build-aux/test.sh scaffold/tests/00-exit-0

9

3 Bootstrapping

Recipe for yogurt: Add yogurt to milk.
—Anonymous

The bootstrap problem we have set out to solve is that none of our modern software
distributions, and Guix in particular, can be created all from source code. In addition to
the carefully signed source code of all the programs (the ‘milk’) an opaque binary seed (the
‘yogurt’) is injected as an essential dependency.

Why would this be a problem, I hear you ask? This is how it is done, we always did it
this way, everyone does it like this! Indeed, a popular way of handling the bootstrapping
issue is by ignoring it.

Your compiler becoming self-hosting. . . a language creator’s wet dream.
—PFH

It seems that writing a self-hosting compiler is considered to be a language creator’s
ultimate goal. It means that their language and compiler have become powerful enough to
not depend on a pre-exising language that possibly is—but certainly was until now—more
powerful; it feels like passing the rite to adulthood.

When you see the irony, you grasp what our bootstrapping effort means in practice.
Creating bootstrappable software is not hard; actually most softwares’ first releases are
bootstrappable. The problem of bootstrapping is not a technical one, it is a lack of awareness
and responsibility.

3.1 The Mes Bootstrap Process

The Full Source Bootstrap currently adopted by Guix1. In its intiial form it is only available
for x86-linux.

Currently, it goes like this:

gcc-mesboot (4.9.4)

^

|

(...)

^

|

binutils-mesboot (2.20.1a), glibc-mesboot (2.2.5),

gcc-core-mesboot (2.95.3)

^

|

patch-mesboot (2.5.9)

^

|

bootstrappable-tcc (0.9.26+31 patches)

^

|

1 See gnu/packages/commencement.scm in the master branch in Guix git https://git.savannah.gnu.

org/cgit/guix.git/tree/gnu/packages/commencement.scm

https://git.savannah.gnu.org/cgit/guix.git/tree/gnu/packages/commencement.scm
https://git.savannah.gnu.org/cgit/guix.git/tree/gnu/packages/commencement.scm

Chapter 3: Bootstrapping 10

gnu-make-mesboot0 (3.80)

^

|

gzip-mesboot (1.2.4)

^

|

tcc-boot (0.9.27)

^

|

mes-boot (0.24.2)

^

|

stage0-posix (hex0..M2-Planet)

^

|

gash-boot, gash-utils-boot

^

|

*

bootstrap-seeds (357-bytes for x86)

~~~

[bootstrap-guile-2.0.9 driver (~25 MiB)]

Here’s a generated dependency diagram to for the initial bootstrap gcc that builds the
rest of Guix.

gcc-core-mesboot0@2.95.3

binutils-mesboot0@2.20.1a

gzip-mesboot@1.2.4

patch-mesboot@2.5.9 tcc-boot@0.9.27

make-mesboot0@3.80

gash-boot@0.3.0

gash-utils-boot@0.2.0

bootar@1b

guile-bootstrap@2.0

tcc-boot0@0.9.26-1136-g5bba73cc

mes-boot@0.24.2

stage0-posix@1.4

bootstrap-seeds@1.0.0

For now, this additional non-bootstrapped dependencies (i.e., binary seeds) are taken
for granted



Chapter 3: Bootstrapping 11

bootstrap-guile

Our next priority is to eleminate the dependency on bootstrap-guile for Gash and
Gash-Utils, and thus for Mes.

3.1.1 Full Source Bootstrap Deployments

GNU Guix Reference implementation of the Full Source Bootstrap for i686-linux and
x86_64-linux building from source all the way down.

Bitcoin Core

The first application of Guix’ Reduced Binary Seed Bootstrap was done in bit-
coin core Bootstrappable Bitcoin Core Builds (https://github.com/bitcoin/
bitcoin/blob/master/contrib/guix/README.md).

Live Bootstrap

The live-bootstrap (https://github.com/fosslinux/live-bootstrap/) has
no dependency on guile-bootstrap, and removes and bootstraps generated
autotools and flex/bison files.

Freedesktop SDK

The Freedesktop SDK used to have an informal dependency on its previous
version being installed in binary from. This dependency was mostly broken in
bootstrap freedesktop binary seed (https://gitlab.com/freedesktop-sdk/
freedesktop-sdk/-/merge_requests/11557), they still have a dependency on
binary Rust.

Full Source Bootstrap from Git

Building on the Live Bootstrap, but building most everything from Git FSB
from Git (https://github.com/schierlm/FullSourceBootstrapFromGit).

NixOS Implementation of a FSB has started NixOS 256b bootstrap (in progress)
(https://github.com/NixOS/nixpkgs/pull/227914).

3.2 Invoking mes

The mes command is the Scheme interpreter whose prime directive is to run the MesCC

program.

For convenience and testing purposes, mes tries to mimic guile.

mes option... FILE...

The options can be among the following:

-s script arg...

By default, mes will read a file named on the command line as a script. Any
command-line arguments arg . . . following script become the script’s argu-
ments; the command-line function returns a list of strings of the form (script

arg...).

Scripts are read and evaluated as Scheme source code just as the load function
would. After loading script, mes exits.

-c expr arg...

Evaluate expr as Scheme code, and then exit. Any command-line arguments
arg . . . ) following expr become command-line arguments; the command-line

https://guix.gnu.org/en/blog/2023/the-full-source-bootstrap-building-from-source-all-the-way-down/
https://github.com/bitcoin/bitcoin/blob/master/contrib/guix/README.md
https://github.com/bitcoin/bitcoin/blob/master/contrib/guix/README.md
https://github.com/fosslinux/live-bootstrap/
https://gitlab.com/freedesktop-sdk/freedesktop-sdk/-/merge_requests/11557
https://gitlab.com/freedesktop-sdk/freedesktop-sdk/-/merge_requests/11557
https://github.com/schierlm/FullSourceBootstrapFromGit
https://github.com/schierlm/FullSourceBootstrapFromGit
https://github.com/NixOS/nixpkgs/pull/227914
https://github.com/NixOS/nixpkgs/pull/227914


Chapter 3: Bootstrapping 12

function returns a list of strings of the form (guile arg...), where mes is the
path of the mes executable.

-- arg... Run interactively, prompting the user for expressions and evaluating them.
Any command-line arguments arg . . . following the -- become command-line
arguments for the interactive session; the command-line function returns a
list of strings of the form (guile arg...), where mes is the path of the mes
executable.

-L,--load-path=directory

Add directory to the front of Mes module load path. The given directories are
searched in the order given on the command line and before any directories in
the GUILE_LOAD_PATH environment variable.

-C,--compiled-path=directory

Accepted and ignored for Guile compatibility.

-l file Load Scheme source code from file, and continue processing the command line.

-e,--main=function

Make function the entry point of the script. After loading the script file (with
-s) or evaluating the expression (with -c), apply function to a list containing
the program name and the command-line arguments—the list provided by the
command-line function.

-h, --help
Display help on invoking mes, and then exit.

-v, --version
Display the current version of mes%, and then exit.

3.2.1 Environment Variables

Here are the environment variables (see see Section “Environment Variables” in Guile Ref-
erence) that affect the run-time behavior of mes:

MES_BOOT

Set MES_BOOT to change the initial Scheme program that mes runs.

MES_ARENA

The initial size of the arena see Section “5.3” in SICP in cells. Default: 20,000.

MES_MAX_ARENA

The maximum size of the arena in cells. Default: 100,000,000.

MES_MAX_STRING

The maximum size of a string. Default: 524,288.

MES_DEBUG

1. Informational:

• MODULEDIR

• included SCM modules and sources

• result of program



Chapter 3: Bootstrapping 13

• gc stats at exit

2. opened files

3. runtime gc stats

4. detailed info

• parsed, expanded program

• list of builtins

• list of symbol

• opened input strings

• gc details

5. usage of opened input strings

GUILE_LOAD_PATH

This variable may be used to augment the path that is searched for Scheme
files when loading. Its value should be a colon-separated list of directories. If
it contains the special path component ... (ellipsis), then the default path is
put in place of the ellipsis, otherwise the default path is placed at the end. The
result is stored in %load-path.

Mes uses GUILE LOAD PATH for compatibility with Guile.

3.3 Invoking mescc

mescc option... FILE...

The options can be among the following:

--align=symbol

align symbol, the default is functions; other valid values are: globals.

--base-address=ADDRESS

use BaseAddress ADDRESS [0x1000000]

-c preprocess, compile and assemble only; do not link

-D DEFINE[=VALUE]

-dumpmachine

display the compiler’s target processor

-E preprocess only; do not compile, assemble or link

-g add blood-elf debug info

This enables GDB setting breakpoints on function names, and to have the GDB
backtrace command to show the function call stack.

-h, --help

display this help and exit

-I DIR append DIR to include path

-L DIR append DIR to library path

-l LIBNAME

link with LIBNAME



Chapter 3: Bootstrapping 14

-m BITS compile for BITS bits [32]

-O LEVEL use optimizing LEVEL

-o FILE write output to FILE

-S preprocess and compile only; do not assemble or link

--std=STANDARD

assume that the input sources are for STANDARD

-V,--version

display version and exit

-w,--write=TYPE

dump Nyacc AST using TYPE {pretty-print,write}

-x LANGUAGE

specify LANGUAGE of the following input files

3.3.1 MesCC Environment Variables

MES

Setting MES to a mes-compatible Scheme will run mescc using that

MES=guile mescc -c scaffold/main.c

See, now Guile has become compatible with Mes, instead of the other way
around ;-)

C_INCLUDE_PATH

LIBRARY_PATH

NYACC_DEBUG

Setting NYACC_DEBUG makes nyacc print names of function during the parsing
phase.

3.4 Invoking mesar

mesar option... command ARCHIVE-FILE FILE...

The command is ignored for compatibility with ar

r[ab][f][u] - replace existing or insert new file(s) into the archive

[c] - do not warn if the library had to be created

[D] - use zero for timestamps and uids/gids (default)

and assumed to be crD.

The options can be among the following:

-h, --help

display this help and exit

-V,--version

display version and exit



15

4 Contributing

4.1 Building from Git

If you want to hack GNU Mes itself, it is recommended to use the latest version from the
Git repository:

git clone git://git.savannah.gnu.org/mes.git

The easiest way to set up a development environment for Mes is, of course, by using
Guix! The following command starts a new shell where all the dependencies and appropriate
environment variables are set up to hack on Mes:

guix shell

If you are unable to use Guix when building Mes from a Git checkout, the following are
the required packages in addition to those mentioned in the installation instructions (see
Section 2.1 [Requirements], page 7).

• GNU Help2man (https://gnu.org/software/help2man/);

• GNU Texinfo (https://gnu.org/software/texinfo/);

• Graphviz (https://www.graphviz.org/);

• Perl (https://www.perl.org/).

Finally, you have to invoke make check to run tests (see Section 2.3 [Running the Test
Suites], page 8). If anything fails, take a look at installation instructions (see Chapter 2
[Installation], page 7) or send a message to the bug-mes@gnu.org mailing list.

4.2 Running Mes From the Source Tree

First, you need to have an environment with all the dependencies available (see Section 4.1
[Building from Git], page 15), and then simply prefix each command by ./pre-inst-env

(the pre-inst-env script lives in the top build tree of Mes).

4.3 Porting GNU Mes

Mes is supported for x86-linux and armhf-linux. A 64 bit (x86 64-linux) is almost done,
only a few bugs remain. The Guix bootstrap for x86 64-linux uses mes for x86-lunix and
that is not expected to change. Likewise, aarch64-linux uses mes for armhf-linux.

A port to GNU/Hurd (x86-gnu) is underway.

Initial scaffold, built by build-aux/build-scaffold.sh:

lib/linux/x86-mes-gcc/exit-42.S

lib/linux/x86-mes/elf32-0exit-42.hex2

lib/linux/x86-mes/elf32-body-exit-42.hex2

lib/linux/x86-mes-gcc/hello-mes.S

lib/linux/x86-mes/elf32-0hello-mes.hex2

lib/linux/x86-mes/elf32-body-hello-mes.hex2

Porting MesCC:

lib/x86-mes/x86.M1

https://gnu.org/software/help2man/
https://gnu.org/software/texinfo/
https://www.graphviz.org/
https://www.perl.org/
mailto:bug-mes@gnu.org


Chapter 4: Contributing 16

module/mescc/mescc.scm

module/mescc/i386/as.scm

module/mescc/i386/info.scm

mes/module/mescc/i386/as.mes

mes/module/mescc/i386/info.mes

4.4 The Perfect Setup

The Perfect Setup to hack on Mes is basically the perfect setup used for Guile hacking (see
Section “Using Guile in Emacs” in Guile Reference Manual). First, you need more than
an editor, you need Emacs (https://www.gnu.org/software/emacs), empowered by the
wonderful Geiser (https://nongnu.org/geiser/).

Geiser allows for interactive and incremental development from within Emacs: code com-
pilation and evaluation from within buffers, access to on-line documentation (docstrings),
context-sensitive completion, M-. to jump to an object definition, a REPL to try out your
code, and more (see Section “Introduction” in Geiser User Manual).

4.5 Coding Style

In general our code follows the GNU Coding Standards (see GNU Coding Standards).
However, they do not say much about Scheme, so here are some additional rules.

4.5.1 Programming Paradigm

Scheme code in Mes is written in a purely functional style.

4.5.2 Formatting Code

When writing Scheme code, we follow common wisdom among Scheme programmers. In
general, we follow the Riastradh’s Lisp Style Rules (https://mumble.net/~campbell/
scheme/style.txt). This document happens to describe the conventions mostly used in
Guile’s code too. It is very thoughtful and well written, so please do read it.

If you do not use Emacs, please make sure to let your editor knows these rules.

Additionally, in Mes we prefer to format if statements like this

(if foo? trivial-then

(let ((bar (the-longer ...)))

more-complicated

...

else))

4.6 Submitting Patches

Development is done using the Git distributed version control system. Thus, access to the
repository is not strictly necessary. We welcome contributions in the form of patches as
produced by git format-patch sent to the bug-mes@gnu.org mailing list.

Please write commit logs in the ChangeLog format (see Section “Change Logs” in GNU
Coding Standards); you can check the commit history for examples.

https://www.gnu.org/software/emacs
https://nongnu.org/geiser/
https://mumble.net/~campbell/scheme/style.txt
https://mumble.net/~campbell/scheme/style.txt
mailto:bug-mes@gnu.org


Chapter 4: Contributing 17

4.6.1 Reporting Bugs

Encountering a problem or bug can be very frustrating for you as a user or potential
contributor. For us as Mes maintainers, the preferred bug report includes a beautiful and
tested patch that we can integrate without any effort.

However, please don’t let our preference stop you from reporting a bug. There’s one
thing much worse for us than getting a bug report without a patch: Reading a complaint or
rant online about your frustrations and how our work sucks, without having heard directly
what you experienced.

So if you report a problem, will it be fixed? And when? The most honest answer is:
It depends. Let’s curry that informationless honesty with a more helpful and more blunt
reminder of a mantra of free software:

Q: When will it be finished?

A: It will be ready sooner if you help.

—Richard Stallman

Join us on #bootstrappable on the Libera Chat IRC network or on bug-mes@gnu.org

to share your experience—good or bad.

Please send bug reports with full details to bug-mes@gnu.org.

mailto:bug-mes@gnu.org
mailto:bug-mes@gnu.org


18

5 Acknowledgments

We would like to thank the following people for their help: Jeremiah Orians, Peter de
Wachter, rain1, Ricardo Wurmus, Rutger van Beusekom.

We also thank Ludovic Courtès for creating GNU Guix and making the bootstrap prob-
lem so painfully visible, John McCarthy for creating LISP-1.5 and Alan Kay for their
inspiring comment on Page 13 (https://queue.acm.org/detail.cfm?id=1039523).

https://queue.acm.org/detail.cfm?id=1039523


19

6 Resources

• Bootstrappable Builds (https://bootstrappable.org) Minimize the amount and size
of opaque binary seeds we need to swallow.

• Reproducible Builds (https://reproducible-builds.org) Provide a verifiable path
from source code to binary.

• Stage0 (https://gitlab.com/oriansj/stage0) If we want, it could all start with a
~500 byte self-hosting hex assembler.

• Bootstrapping wiki (https://bootstrapping.miraheze.org) An amazing collection
of small/bootstrappable compilers, operating systems, anything you need.

• #bootstrappable (irc.libera.chat) The bootstrapping community home at the Lib-
era Chat IRC network.

• guix-devel@gnu.org The Guix mailing list, where it all started. guix-devel archives
(https://lists.gnu.org/archive/html/guix-devel/).

https://bootstrappable.org
https://reproducible-builds.org
https://gitlab.com/oriansj/stage0
https://bootstrapping.miraheze.org
irc.libera.chat
https://lists.gnu.org/archive/html/guix-devel/
https://lists.gnu.org/archive/html/guix-devel/


20

Appendix A GNU Free Documentation License

Version 1.3, 3 November 2008

Copyright c© 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc.
https://fsf.org/

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and
useful document free in the sense of freedom: to assure everyone the effective freedom
to copy and redistribute it, with or without modifying it, either commercially or non-
commercially. Secondarily, this License preserves for the author and publisher a way
to get credit for their work, while not being considered responsible for modifications
made by others.

This License is a kind of “copyleft”, which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public
License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because
free software needs free documentation: a free program should come with manuals
providing the same freedoms that the software does. But this License is not limited to
software manuals; it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License principally for
works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a
notice placed by the copyright holder saying it can be distributed under the terms
of this License. Such a notice grants a world-wide, royalty-free license, unlimited in
duration, to use that work under the conditions stated herein. The “Document”,
below, refers to any such manual or work. Any member of the public is a licensee, and
is addressed as “you”. You accept the license if you copy, modify or distribute the work
in a way requiring permission under copyright law.

A “Modified Version” of the Document means any work containing the Document or
a portion of it, either copied verbatim, or with modifications and/or translated into
another language.

A “Secondary Section” is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document
to the Document’s overall subject (or to related matters) and contains nothing that
could fall directly within that overall subject. (Thus, if the Document is in part a
textbook of mathematics, a Secondary Section may not explain any mathematics.) The
relationship could be a matter of historical connection with the subject or with related
matters, or of legal, commercial, philosophical, ethical or political position regarding
them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice that says that the Document is released

https://fsf.org/


Appendix A: GNU Free Documentation License 21

under this License. If a section does not fit the above definition of Secondary then it is
not allowed to be designated as Invariant. The Document may contain zero Invariant
Sections. If the Document does not identify any Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover
Texts or Back-Cover Texts, in the notice that says that the Document is released under
this License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may
be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy, represented
in a format whose specification is available to the general public, that is suitable for
revising the document straightforwardly with generic text editors or (for images com-
posed of pixels) generic paint programs or (for drawings) some widely available drawing
editor, and that is suitable for input to text formatters or for automatic translation to
a variety of formats suitable for input to text formatters. A copy made in an otherwise
Transparent file format whose markup, or absence of markup, has been arranged to
thwart or discourage subsequent modification by readers is not Transparent. An image
format is not Transparent if used for any substantial amount of text. A copy that is
not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII without
markup, Texinfo input format, LaTEX input format, SGML or XML using a publicly
available DTD, and standard-conforming simple HTML, PostScript or PDF designed
for human modification. Examples of transparent image formats include PNG, XCF
and JPG. Opaque formats include proprietary formats that can be read and edited
only by proprietary word processors, SGML or XML for which the DTD and/or pro-
cessing tools are not generally available, and the machine-generated HTML, PostScript
or PDF produced by some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following
pages as are needed to hold, legibly, the material this License requires to appear in the
title page. For works in formats which do not have any title page as such, “Title Page”
means the text near the most prominent appearance of the work’s title, preceding the
beginning of the body of the text.

The “publisher” means any person or entity that distributes copies of the Document
to the public.

A section “Entitled XYZ” means a named subunit of the Document whose title either
is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in
another language. (Here XYZ stands for a specific section name mentioned below, such
as “Acknowledgements”, “Dedications”, “Endorsements”, or “History”.) To “Preserve
the Title” of such a section when you modify the Document means that it remains a
section “Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that
this License applies to the Document. These Warranty Disclaimers are considered to
be included by reference in this License, but only as regards disclaiming warranties:
any other implication that these Warranty Disclaimers may have is void and has no
effect on the meaning of this License.

2. VERBATIM COPYING



Appendix A: GNU Free Documentation License 22

You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the license
notice saying this License applies to the Document are reproduced in all copies, and
that you add no other conditions whatsoever to those of this License. You may not use
technical measures to obstruct or control the reading or further copying of the copies
you make or distribute. However, you may accept compensation in exchange for copies.
If you distribute a large enough number of copies you must also follow the conditions
in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of
the Document, numbering more than 100, and the Document’s license notice requires
Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all
these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on
the back cover. Both covers must also clearly and legibly identify you as the publisher
of these copies. The front cover must present the full title with all words of the title
equally prominent and visible. You may add other material on the covers in addition.
Copying with changes limited to the covers, as long as they preserve the title of the
Document and satisfy these conditions, can be treated as verbatim copying in other
respects.

If the required texts for either cover are too voluminous to fit legibly, you should put
the first ones listed (as many as fit reasonably) on the actual cover, and continue the
rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100,
you must either include a machine-readable Transparent copy along with each Opaque
copy, or state in or with each Opaque copy a computer-network location from which
the general network-using public has access to download using public-standard network
protocols a complete Transparent copy of the Document, free of added material. If
you use the latter option, you must take reasonably prudent steps, when you begin
distribution of Opaque copies in quantity, to ensure that this Transparent copy will
remain thus accessible at the stated location until at least one year after the last time
you distribute an Opaque copy (directly or through your agents or retailers) of that
edition to the public.

It is requested, but not required, that you contact the authors of the Document well
before redistributing any large number of copies, to give them a chance to provide you
with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modified Version under precisely
this License, with the Modified Version filling the role of the Document, thus licensing
distribution and modification of the Modified Version to whoever possesses a copy of
it. In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any,



Appendix A: GNU Free Documentation License 23

be listed in the History section of the Document). You may use the same title as
a previous version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five
of the principal authors of the Document (all of its principal authors, if it has fewer
than five), unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the
publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other
copyright notices.

F. Include, immediately after the copyright notices, a license notice giving the public
permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled “History”, Preserve its Title, and add to it an item
stating at least the title, year, new authors, and publisher of the Modified Version
as given on the Title Page. If there is no section Entitled “History” in the Docu-
ment, create one stating the title, year, authors, and publisher of the Document
as given on its Title Page, then add an item describing the Modified Version as
stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to
a Transparent copy of the Document, and likewise the network locations given in
the Document for previous versions it was based on. These may be placed in the
“History” section. You may omit a network location for a work that was published
at least four years before the Document itself, or if the original publisher of the
version it refers to gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title
of the section, and preserve in the section all the substance and tone of each of the
contributor acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and
in their titles. Section numbers or the equivalent are not considered part of the
section titles.

M. Delete any section Entitled “Endorsements”. Such a section may not be included
in the Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or to conflict in
title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify
as Secondary Sections and contain no material copied from the Document, you may at
your option designate some or all of these sections as invariant. To do this, add their



Appendix A: GNU Free Documentation License 24

titles to the list of Invariant Sections in the Modified Version’s license notice. These
titles must be distinct from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but
endorsements of your Modified Version by various parties—for example, statements of
peer review or that the text has been approved by an organization as the authoritative
definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be
added by (or through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or by arrangement
made by the same entity you are acting on behalf of, you may not add another; but
you may replace the old one, on explicit permission from the previous publisher that
added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission
to use their names for publicity for or to assert or imply endorsement of any Modified
Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License,
under the terms defined in section 4 above for modified versions, provided that you
include in the combination all of the Invariant Sections of all of the original documents,
unmodified, and list them all as Invariant Sections of your combined work in its license
notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment
to the section titles in the list of Invariant Sections in the license notice of the combined
work.

In the combination, you must combine any sections Entitled “History” in the vari-
ous original documents, forming one section Entitled “History”; likewise combine any
sections Entitled “Acknowledgements”, and any sections Entitled “Dedications”. You
must delete all sections Entitled “Endorsements.”

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released
under this License, and replace the individual copies of this License in the various
documents with a single copy that is included in the collection, provided that you
follow the rules of this License for verbatim copying of each of the documents in all
other respects.

You may extract a single document from such a collection, and distribute it individu-
ally under this License, provided you insert a copy of this License into the extracted
document, and follow this License in all other respects regarding verbatim copying of
that document.



Appendix A: GNU Free Documentation License 25

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, is called
an “aggregate” if the copyright resulting from the compilation is not used to limit the
legal rights of the compilation’s users beyond what the individual works permit. When
the Document is included in an aggregate, this License does not apply to the other
works in the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document,
then if the Document is less than one half of the entire aggregate, the Document’s Cover
Texts may be placed on covers that bracket the Document within the aggregate, or the
electronic equivalent of covers if the Document is in electronic form. Otherwise they
must appear on printed covers that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations
of the Document under the terms of section 4. Replacing Invariant Sections with
translations requires special permission from their copyright holders, but you may
include translations of some or all Invariant Sections in addition to the original versions
of these Invariant Sections. You may include a translation of this License, and all the
license notices in the Document, and any Warranty Disclaimers, provided that you
also include the original English version of this License and the original versions of
those notices and disclaimers. In case of a disagreement between the translation and
the original version of this License or a notice or disclaimer, the original version will
prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “His-
tory”, the requirement (section 4) to Preserve its Title (section 1) will typically require
changing the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly
provided under this License. Any attempt otherwise to copy, modify, sublicense, or
distribute it is void, and will automatically terminate your rights under this License.

However, if you cease all violation of this License, then your license from a particular
copyright holder is reinstated (a) provisionally, unless and until the copyright holder
explicitly and finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means prior to 60 days
after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if
the copyright holder notifies you of the violation by some reasonable means, this is the
first time you have received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after your receipt of the
notice.

Termination of your rights under this section does not terminate the licenses of parties
who have received copies or rights from you under this License. If your rights have
been terminated and not permanently reinstated, receipt of a copy of some or all of the
same material does not give you any rights to use it.



Appendix A: GNU Free Documentation License 26

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.
See https://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License “or any later version”
applies to it, you have the option of following the terms and conditions either of that
specified version or of any later version that has been published (not as a draft) by
the Free Software Foundation. If the Document does not specify a version number of
this License, you may choose any version ever published (not as a draft) by the Free
Software Foundation. If the Document specifies that a proxy can decide which future
versions of this License can be used, that proxy’s public statement of acceptance of a
version permanently authorizes you to choose that version for the Document.

11. RELICENSING

“Massive Multiauthor Collaboration Site” (or “MMC Site”) means any World Wide
Web server that publishes copyrightable works and also provides prominent facilities
for anybody to edit those works. A public wiki that anybody can edit is an example of
such a server. A “Massive Multiauthor Collaboration” (or “MMC”) contained in the
site means any set of copyrightable works thus published on the MMC site.

“CC-BY-SA” means the Creative Commons Attribution-Share Alike 3.0 license pub-
lished by Creative Commons Corporation, a not-for-profit corporation with a principal
place of business in San Francisco, California, as well as future copyleft versions of that
license published by that same organization.

“Incorporate” means to publish or republish a Document, in whole or in part, as part
of another Document.

An MMC is “eligible for relicensing” if it is licensed under this License, and if all works
that were first published under this License somewhere other than this MMC, and
subsequently incorporated in whole or in part into the MMC, (1) had no cover texts
or invariant sections, and (2) were thus incorporated prior to November 1, 2008.

The operator of an MMC Site may republish an MMC contained in the site under
CC-BY-SA on the same site at any time before August 1, 2009, provided the MMC is
eligible for relicensing.

https://www.gnu.org/copyleft/


Appendix A: GNU Free Documentation License 27

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the
document and put the following copyright and license notices just after the title page:

Copyright (C) year your name.

Permission is granted to copy, distribute and/or modify this document

under the terms of the GNU Free Documentation License, Version 1.3

or any later version published by the Free Software Foundation;

with no Invariant Sections, no Front-Cover Texts, and no Back-Cover

Texts. A copy of the license is included in the section entitled ``GNU

Free Documentation License''.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the
“with. . .Texts.” line with this:

with the Invariant Sections being list their titles, with

the Front-Cover Texts being list, and with the Back-Cover Texts

being list.

If you have Invariant Sections without Cover Texts, or some other combination of the
three, merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing
these examples in parallel under your choice of free software license, such as the GNU
General Public License, to permit their use in free software.



28

Concept Index

A
arch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

B
bug, bug report, reporting a bug . . . . . . . . . . . . . . . 17

C
coding style . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
compile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
contact, irc, mailing list . . . . . . . . . . . . . . . . . . . . . . . . 17

D
define DEFINE [VALUE=1] . . . . . . . . . . . . . . . . . . . . 13

E
environment variables . . . . . . . . . . . . . . . . . . . . . . . . . . 12
evaluate expression, command-line argument . . . 11

F
formatting code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
formatting, of code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

G
Guile, compatibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

I
indentation, of code . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
installing Mes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

L
license, GNU Free Documentation License . . . . . . 20

M
machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

P
purpose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

R
repl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

S
script mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
shell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

T
test suites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8



29

Programming Index

(Index is nonexistent)


	1 Introduction
	Software Freedom
	Reproducible Builds
	Can we trust our freedom?
	An Old Idea

	Bootstrappable Builds
	Bootstrap Binary Seed

	Reduced Binary Seed Bootstrap
	Scheme-only Bootstrap
	Full Source Bootstrap
	Stage0
	M2-Planet

	LISP as Maxwell's Equations of Software
	Auditable Elegance


	2 Installation
	Requirements
	Bootstrap Requirements
	Running the Test Suites

	3 Bootstrapping
	The Mes Bootstrap Process
	Full Source Bootstrap Deployments

	Invoking mes
	Environment Variables

	Invoking mescc
	MesCC Environment Variables

	Invoking mesar

	4 Contributing
	Building from Git
	Running Mes From the Source Tree
	Porting GNU Mes
	The Perfect Setup
	Coding Style
	Programming Paradigm
	Formatting Code

	Submitting Patches
	Reporting Bugs


	5 Acknowledgments
	6 Resources
	A GNU Free Documentation License
	Concept Index
	Programming Index

