
Creating Tar File Releases with Swbis

Making Source Packages with Embedded GPG Signatures
05 August 2006

by Jim Lowe
This manual is for the use of GNU Swbis (version 0.499) in the creation and veri�cation of
software releases containing embedded GPG signatures.
Copyright c
 2006 Jim Lowe

Permission is granted to copy, distribute and/or modify this document under
the terms of the GNU Free Documentation License, Version 1.2 or any later
version published by the Free Software Foundation; with no Invariant Sections,
with the Front-Cover texts being \A GNU Manual," and with the Back-Cover
Texts as in (a) below. A copy of the license is included in the section entitled
\GNU Free Documentation License."
(a) The FSF's Back-Cover Text is: \You have freedom to copy and modify
this GNU Manual, like GNU software. Copies published by the Free Software
Foundation raise funds for GNU development."

i

Table of Contents

1 Prerequisites . 1

2 Introduction . 2

3 Making Distribution Tar Files 3
3.1 PSF Basics . 3

3.1.1 Name-Version-Release . 4
3.1.2 The Distribution Object . 4
3.1.3 The Vendor Object . 4
3.1.4 The vendor tag Attribute . 4
3.1.5 Package File Ownerships . 5

3.2 PSFs for Source Packages . 5

4 Verifying the Distribution 7
4.1 Verifying the Tar Archive File . 7
4.2 Verifying the Unpacked Archive . 7

4.2.1 The `checkdigest' script . 8
4.3 Verifying Using Existing GNU Tools . 8

5 Adding New Signatures . 9

6 Guidelines for GNU Source Packages 10

7 Using Automake and Swbis 13

8 Using CVS and Swbis . 14

Chapter 1: Prerequisites 1

1 Prerequisites

In general, you need Unix-like shell and utilites, including awk. A Posix shell is required,
bash works �ne. You will also need GNU tar version 1.14, 1.15.1 or 1.15.91, and GNU
Privacy Guard (gpg). The GnuPG passphrase agent, (gpg-agent) is supported though
optional. The features described in the last two chapters dealing with Automake and CVS
require GNU swbis version 0.499.

Chapter 2: Introduction 2

2 Introduction

This document explains how to create and verify tar archives using GNU Swbis using par-
ticular methods and policy suited for free software distribution tar �les. The primary
motivation for using Swbis is that it can create packages with an embedded GPG signature.

The creation method described uses swign which employs swpackage and tar so that
the archive is written entirely by tar. The packaging policy is designed so there are no
package layout changes except for the addition of the meta-data directory `catalog'. This
is accomplished by specifying the POSIX control directory as empty strings "" and using a
implementation extension option to set the path name pre�x to the package Name-Version.
The `catalog' directory conforms to the POSIX packaging standard ISO/IEC 15068-2:1999.

The veri�cation methods described include a procedure that does not require any part
of Swbis. It uses tar, gpg, and a few other GNU utilities plus a Ext2 compatible �le system
to verify the package data.

Chapter 3: Making Distribution Tar Files 3

3 Making Distribution Tar Files

Making a distribution tar �le �rst requires making a input �le called a Product Speci�cation
File or PSF for short. It directs swpackage on what �les to package, the package structure,
and what control directory names to use. It also can contain meta-data (i.e. attributes)
that are transferred into the package meta-data �le named INDEX.

Here are examples that use a internally generated PSF to get started quickly, however,
it is recommended that you provide your own PSF according to guidelines below.
Note that this will erase and replace a �le named `catalog' which is the name of the
ISO/IEC 15068-2 meta-data directory.

cd somepackage-1.0
swign -u "Your GPG Name" @- | tar tvf -

In this example swign generated a PSF since one was not supplied. Here is what it used.
swign --show-psf
distribution
dfiles dfiles

product
title somepackage version 1.0
description Source package for somepackage version 1.0
tag somepackage
revision 1.0
control_directory ""
fileset
tag somepackage-sources
control_directory ""
file_permissions -o jhl -g jhl
directory .
file *
exclude catalog

If you already have a PSF named `PSF', here's how to use it with swign:
cd somepackage-1.0
swign -s PSF -u "Your GPG Name" @- | tar tvf -

The same package can be created with swpackage, however, it requires specifying more
options and the archive is written by swpackage instead of tar, Here's how:

cd somepackage-1.0
swpackage -s PSF -gpg-name "Your GPG Name" \
--dir=somepackage-0.1 --sign --files @- |
tar tvf -

3.1 PSF Basics
For information about PSFs in general, see the info manual on the Swbis home page, or,
the sw manual page. This section applies to all PSFs.

Chapter 3: Making Distribution Tar Files 4

Here some basic information. The PSF consists of object keywords and attribute key-
words. The most common object keywords are distribution, bundle, vendor, product,
and fileset. All attribute keywords exist in an object context and some attribute key-
words are used in several object keywords contexts. To disambiguate the following notation
is used: object name.attribute.

Comments are lines or parts of lines that begin with #. Whitespace in a PSF is not
signi�cant. Objects are terminated by the next object keyword. Unrecognized attributes
are allowed but unrecognized objects are not allowed.

The tag attribute in all objects should not contain the following four characters ' ', ':','.',
',' (space, colon, comma, period).

3.1.1 Name-Version-Release

Most GNU packages do not have a Release part, but how this is modeled in a PSF is described
here anyway. The Release part is analogous to the RPMTAG_RELEASE and debian revision
attributes, hence GNU software releases do no have this part because GNU packages are the
original 'upstream' releases relative to the packages of GNU/Linux distributions.

The Name becomes the product.tag attribute. The Revision becomes the
product.revision attribute. The Release becomes the product.vendor tag attribute.

3.1.2 The Distribution Object

In most PSFs this object can be left empty. An empty object consists of just the object
keyword followed by a newline. Any control or package meta-data �les that apply to the
distribution can tbe included in this object.

For example:
distribution
dfiles dfiles
AUTHORS <AUTHORS
COPYING <COPYING

sets the d�les attribute to its default value of "d�les". The `AUTHORS',
and `COPYING' will be included as individual �les in the package directory
`somepackage-0.1/catalog/dfiles'.

3.1.3 The Vendor Object

Providing a vendor object is optional.
vendor

the_term_vendor_is_misleading true # True or False
tag tag # Short name, Globally unique if possible
title title # Longer name
description description # A Detailed Description

The tag and vendor_tag attributes should not contain a ' ', ':','.', ',' (space, colon,
comma, period).

Chapter 3: Making Distribution Tar Files 5

3.1.4 The vendor tag Attribute

The product.vendor_tag attribute is version identi�er attribute and is used to distinguish
packages that have the same product.tag and product.revision attributes. It points to a
vendor object with a matching vendor.tag attribute.

3.1.5 Package File Ownerships

File permissions can be set independent of the permissions of the source �les. The default
policy for swign is to use the current owner and group. For reasons explained later, setting
the ownerships to 0/0 for the owner and group is helpful. This is done with the following
line in the PSF.

file_permissions -o 0 -g 0

The resulting ownerships are equivalent to the GNU tar options --numeric
--owner=root --group=root.

3.2 PSFs for Source Packages
Here is an example PSF for the `somepackage' package, version 1.0.

distribution
product
title The somepackage package
description Source package for somepackage
tag somepackage
revision 1.0
control_directory ""
fileset
tag somepackage-sources
control_directory ""
file_permissions -o 0 -g 0
directory .
file *
exclude catalog

swign version 0.483 and later has a attribute replacement feature for the product.tag
and revision attributes. They are determined from the current directory which must have
the form tag-revision. The replacement strings are %__tag and %__revision. Hence here
is a �le, call it `PSF.in', which will work for any future revision.

Chapter 3: Making Distribution Tar Files 6

PSF.in -- 'swign' Input file
distribution
product
title The somepackage package
description Source package for somepackage
tag %__tag
revision %__revision
control_directory ""
fileset
tag somepackage-sources
control_directory ""
file_permissions -o 0 -g 0
directory .
file *
exclude catalog

Here's how to use `PSF.in'
cd somepackage-1.0
swign -s PSF.in -u "Your GPG Name" @- | tar tvf -
-or -
cat PSF.in | swign -s - -u "Your GPG Name" @- | tar tvf -

Chapter 4: Verifying the Distribution 7

4 Verifying the Distribution

The swbis signature veri�cation program, swverify, will verify a package in two forms 1)
as a tar archive �le, and 2) as a unpacked archive. The distribution can also be veri�ed
manually using the existing GNU tools tar, gpg, md5sum and sha1sum and a Ext2 compatible
�le system. Verifying a distribution requires comparing the archive digests (md5 and sha1)
with the digests present in the authenticated GPG signed data stream.

4.1 Verifying the Tar Archive File
The swverify veri�es the package in memory without installing the package in �le system.
If a package is signed, it will have the following �les:

<path>/catalog/
<path>/catalog/INDEX
...
<path>/catalog/<dfiles>/md5sum
<path>/catalog/<dfiles>/sha1sum
<path>/catalog/<dfiles>/sig_header
<path>/catalog/<dfiles>/signature
...

For example:
swverify -d @- <somepackage-1.0.tar.gz

- or -
swverify <somepackage-1.0.tar.gz

4.2 Verifying the Unpacked Archive
The ability to verify the unpacked form is subject to several limitations, chief among them
is the package must unpack into a single directory, veri�cation then takes place on that
directory.

For example
tar zxpf somepackage-1.0.tar.gz
swverify -d @:somepackage-1.0

Verifying in this way requires that tar be able to re-create the exact byte stream that
existed in the original distribution.

There are many constraints on the ability to verify the unpacked archive. These restric-
tions do not apply when verifying the archive �le itself. Here they are:
� The �le system must order directory entries like the Ext2 �le system. (Ext3 �le sys-

tems have this compatibility if dir indexes are turned o�. e.g. tune2fs -O ^dir index
/dev/device).

� The package must unpack into a single directory.
� The version of GNU tar must be compatible with the swpackage version used to make

the package.
� The �le owners in the package are present on the system with the same ids.

Chapter 4: Verifying the Distribution 8

� Whether the package has �le names longer than 99 bytes. (There have been intermittent
deviations with GNU tar for certain long �le names.)

� The package contains `checkdigest' script `<path>/catalog/dfiles/checkdigest'
� The package contains distribution �le list `<path>/catalog/dfiles/files' (if the

checkdigest script requires it, which it should).

4.2.1 The `checkdigest' script

The checkdigest script is an implementation extension veri�cation hook. swverify will
execute it after verifying the GPG signature and swverify exits with its exit status. It is
intended to be a shell script that veri�es the unpacked archive using existing GNU tools
using the techniques described in the next section "Verifying Using Existing GNU Tools".

The �le `checkdigest.sh' from the swbis distribution will work for any package.
To include a checkdigest script in the package, add the following line to the

distribution object in the PSF.
checkdigest </usr/local/opt/src/checkdigest.sh # For Example

4.3 Verifying Using Existing GNU Tools
Verifying manually is subject to the same constraints as verifying the unpacked archive, ex-
cept for the existence of the `checkdigest' script and �le list �le `catalog/dfiles/files'.
The steps below that check the payload message digests are typically the checks the
`checkdigest' script would perform.

The �rst step is to unpack.
rm -fr somepackage-1.0
tar zxpf somepackage-1.0.tar.gz

The next step is try to re-create the signed byte stream and verify with gpg like this:
tar cf - --format=ustar -b1 --numeric --owner=root --group=root \
--exclude=catalog/dfiles/signature \
somepackage-1.0/catalog |
gpg --verify somepackage-1.0/catalog/dfiles/signature -

Experimenting with the --format, --numeric, --owner, and --group options may be
required to get a authentic byte stream. These options depend on how the distribution was
created, speci�cally, the swign --format option and the PSF file_permissions directive.
This is why a consistent �le permissions policy and tar archive format are important.

Next, try to re-create the payload byte streams like this:
tar cf - --format=ustar -b1 --numeric --owner=root --group=root \
--exclude=somepackage-1.0/catalog \
--exclude=somepackage-1.0/catalog/* somepackage-1.0 | md5sum

Then compare this md5 to the contents of `somepackage-1.0/catalog/dfiles/md5sum'.
Do the same thing for the sha1 digest. If the package contains a symbolic link then you will
not be able to re-create these digests because the modi�cation time cannot be preserved for
this �le type. This may be a good reason source packages not contain symbolic links.

Chapter 5: Adding New Signatures 9

5 Adding New Signatures

If a package has a signature, the signature can be replaced or a new signature can be added
keeping the old one.

Currently, swbis does not have a utility to make this easy, however, one is planned. The
swinstall and swverify command currently support multiple signatures.

To replace the signature, all that is required is to replace the data part of the
`<path>/catalog/dfiles/signature' �le or add a new archive member, using the same
tar header, placing it before or after the existing signature member.

The signature itself must be formatted in a particular way and have a length
in bytes that matches its tar header, this is currently 1024 bytes. Every signature
must have the same tar header (i.e. same name) and this tar header is stored in the
`<path>/catalog/dfiles/sig_header' �le.

Hence, to make a new signature member, take the data part of `<path>/catalog/dfiles/sig_header'
(512 bytes) and append the 1024 bytes of the properly formatted signature, replace or add
these 1536 bytes in the archive (this currently must be done by manually splitting the �le
into pieces, then concatenating it back together or by using a binary editor).

Fortunately, swbis does have a utility to reproduce the signed data. gpg and dd will be
used to make a signature and format it like this:

First, grab the sig_header
tar zxpf somepackage-1.0.tar.gz -O */catalog/dfiles/sig_header |
dd bs=512 count=1 of=/tmp/newsig

Now, make the new signature
Note: 'swverify -WC' writes the signed data to stdout
swverify -WC <somepackage-1.0.tar.gz |
gpg --armor -sb -o - | dd bs=1024 conv=sync count=1 >>/tmp/newsig

For example, a package with two (2) signatures looks like this:
somepackage-1.0/catalog/
somepackage-1.0/catalog/INDEX
...
somepackage-1.0/catalog/dfiles/sig_header
somepackage-1.0/catalog/dfiles/signature
somepackage-1.0/catalog/dfiles/signature
...

Since all but the last signature is lost when unpacked, the last signature should be the
considered the primary one.

Chapter 6: Guidelines for GNU Source Packages 10

6 Guidelines for GNU Source Packages

Here are itemized guidelines for GNU packages:
� Use GNU tar version 1.15.x, GNU swbis version 0.483 or later versions.
� Use the default swign format option `--format=ustar'. This corresponds to tar option

`--format=ustar'.
� Do not include symbolic or hard links in the distribution, make them when con�guring

if needed.
� Try not to make �le names longer than 99 bytes because this will make veri�cation of

the unpacked directory form a little problematic until some bugs in swbis and tar are
fully converged.

� Set the �le ownerships in the package to numeric root/root. Using the
file_permissions -o 0 -g 0 directive in the PSF is the easiest way to do this.

� Do include a `checkdigest' script. The �le `./bin/checkdigest.sh' from the swbis
distribution should work for any package.

Here is an example PSF.

Chapter 6: Guidelines for GNU Source Packages 11

PSF.in -- Example 'swign' Input file for GNU packages.
Occurrences of %__tag and %__revision will be replaced
by values determined from the name of the current directory
that has the form: tag-revision
distribution
dfiles dfiles # dfiles is the default
AUTHORS <./AUTHORS # optional
COPYING <./COPYING # optional
checkdigest <./var/checkdigest.sh # or wherever it is on your system
tag %__tag-%__revision # Optional, this will set '--dir' option of

of swpackage.
vendor

the_term_vendor_is_misleading True
tag GNU
title GNU's Not Unix

description "The GNU Project was launched in 1984 to develop a complete UNIX-like
operating system which is free software: free as in freedom, not price.
See http://www.gnu.org."

product
title GNU %__tag
vendor_tag GNU
description Source package for %__tag # More can be added
tag %__tag # This is the package name
revision %__revision # This is the package version
control_directory ""
fileset

tag source
control_directory ""
file_permissions -o 0 -g 0
directory .
file *
exclude RCS # Not supported yet by swign
exclude CVS # Not supported yet by swign
exclude catalog # required

Here is how to use the PSF to create a package with an embedded GPG signature.

cd somepackage-1.0
swign -s PSF.in -u "Your GPG name" @- | gzip -9 >../somepackage-1.0.tar.gz
Then do a couple quick tests
swverify -d @- <../somepackage-1.0.tar.gz

If a checkdigest script was included and the file system is Ext2
compatible then the following should work, try it
swverify -d @.

For some newer file system you must use the --order-catalog option

Chapter 6: Guidelines for GNU Source Packages 12

swverify --order-catalog -d @.

To make a nearly identical package using swpackage

First, the replacement macros must be processed by swign
swign -s PSF.in --show-psf |
swpackage -s - --gpg-name="Your GPG name" \
--dir-owner=0 --dir-group=0 --files --sign @- |
gzip -9 >../somepackage-1.0.tar.gz

There are di�erences between swign and swpackage. swign uses swpackage but uses
tar to write the �nal archive hence it is more fail safe against bugs. swign modi�es the
`./catalog/' making `.' immediately veri�able with swverify and is simpler to use.

That's it. You now have a tar archive with one or more embedded signatures, that is
created using tar, is veri�able with existing tools, compatible with current practice, and
conforms to the POSIX packaging standard.

Chapter 7: Using Automake and Swbis 13

7 Using Automake and Swbis

This section describes an Automake target to include in the top level Make�le.am �le. To
use it, you must get your package working with Automake and able to create a distribution
using one of the standard distribution targets such as dist-gzip that is already part of
Automake.

This example target is called dist-swbis. The target is designed to be symmetric
with the other standard Automake targets such as dist-gzip. It uses the swign program.
The `PSF.in' �le must use the %__tag and %__revision macros described above. The
passphrase input options and identity is controlled by environment variables: SWPACK-
AGEPASSFD, GNUPGNAME, GNUPGHOME.
dist-swbis: distdir

(cd $(distdir) && swign -s PSF.in --name-version=$(distdir) @-) | GZIP=$(GZIP_ENV) gzip -c >$(distdir).tar.gz
$(sw_am__remove_distdir)

Provide am__remove_distdir ourselves since am__remove_distdir may be a
private automake variable.
sw_am__remove_distdir = \
{ test ! -d $(distdir) \

|| { find $(distdir) -type d ! -perm -200 -exec chmod u+w {} ';' \
&& rm -fr $(distdir); }; }

Here is an example invocation using the environment variable controls:
export SWPACKAGEPASSFD=agent; export GNUPGNAME="Your Name"; make dist-swbis

To input your passphrase from the tty, unset SWPACKAGEPASSFD or set it to "tty".
The result should be a �le named `distdir.tar.gz' that has the same layout as the

package produced by dist-gzip excpept this package will carry around your GPG signature
in the additional ./catalog meta-data directory.

The �le should then be veri�ed:
swverify -d @- <distdir.tar.gz

That's it.

Chapter 8: Using CVS and Swbis 14

8 Using CVS and Swbis

This section describes how to use swbis to place GPG signatures into a source code man-
agement repository such as CVS. The application of swbis simply involves adding the
`./catalog/' directory and its contents to the repository and is not speci�c to any particu-
lar SCM. The �les in the `./catalog/' directory are either directories or ascii text regular
�les.

The �rst step is to perfectly sync-up with the repository. Empty directories should be
removed and created on the
y by the Make�les. Stray junk �les in the working directory
and repository need to be deleted from both. Failure to do this will result in failed veri�-
cation although the partial success can still be useful. (Also the RCS style �le Id's used by
CVS may interfere the veri�cation of the �le digests.)

Step two is to initialize, add, and commit the `./catalog/' directory in the top level
module. Just make the regular �les empty for now. The order does not matter. The �les
are:

catalog/
catalog/INDEX
catalog/dfiles/
catalog/dfiles/INFO
catalog/dfiles/checkdigest
catalog/dfiles/md5sum
catalog/dfiles/sha1sum
catalog/dfiles/adjunct_md5sum
catalog/dfiles/files
catalog/dfiles/sig_header
catalog/dfiles/signature
catalog/pfiles/
catalog/pfiles/INFO
catalog/INFO

Next, checkout the `./catalog/' directory. Treat it just like any other directory except
you will be using the swign command to generate its contents. Then at any point of your
choosing sign your working directory by running swign and then commit all of your changes
to the repository including the `./catalog/' directory.

Here's how to sign:
make distclean;
SWPACKAGEPASSFD=agent; GNUPGNAME="Your Name" swign --name-version=module_name-
1.2.3 -s PSF.in --no-remove @.

This swign invocation will only alter �les in `./catalog/'.
Note that the --no-remove option is required as this prevents the SCM control �les from

being deleted. Also, the --name-version option is required.
The `PSF.in' �le has several specializatons. The %__tag and %__revision macros must

be used and the exclude directive must exclude the SCM's working directory control �les.
The `PSF.in' �le must also specify a checkdigest script as this is required to verify the
directory form of a package. The `checkdigest.sh' �le from swbis version 0.496 is a working
example of this script.

Chapter 8: Using CVS and Swbis 15

Next, you should tag this point so it can retrieved in the future. Now, export (to exclude
the SCM's control �les) the module to a new directory and run swverify with the --scm
option (The swverify version must be at least 0.496).

cvs export -r your_tag_name module_name
cd module_name
swverify -d --scm @.

That's it.

	Prerequisites
	Introduction
	Making Distribution Tar Files
	PSF Basics
	Name-Version-Release
	The Distribution Object
	The Vendor Object
	The vendor_tag Attribute
	Package File Ownerships

	PSFs for Source Packages

	Verifying the Distribution
	Verifying the Tar Archive File
	Verifying the Unpacked Archive
	The checkdigest script

	Verifying Using Existing GNU Tools

	Adding New Signatures
	Guidelines for GNU Source Packages
	Using Automake and Swbis
	Using CVS and Swbis

